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Spartan/Augustus Code
Package Description

Spartan: SPN , 2 T + Multi-Group, Even-Parity

Photon Transport Package with v/c cor-

rections

Augustus: P1 (Diffusion) Package

JTpack: Krylov Subspace Iterative Solver Package

(by John Turner, ex-LANL)

UMFPACK: Unstructured Multifrontal Solver Pack-

age (an Incomplete Direct Method by

Tim Davis, U of FL)

LINPACK: Direct Dense Linear Equation Solver

Package

BLAS: Basic Linear Algebra Subprograms
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Spartan/Augustus Code Size
Included files counted only once:

Spartan: 10213 lines, 57% comments
Augustus: 12872 lines, 60% comments
JTpack: 14167 lines, 54% comments
UMFPACK: 15393 lines, 58% comments
BLAS: 7467 lines, 48% comments
LINPACK: 6926 lines, 52% comments
Total 67038 lines, 56% comments

With includes:

Spartan: 14080 lines, 71% comments
Augustus: 31595 lines, 78% comments
JTpack: 36009 lines, 73% comments
UMFPACK: 15393 lines, 58% comments
BLAS: 7467 lines, 48% comments
LINPACK: 6926 lines, 52% comments
Total 111470 lines, 73% comments

4 of 25



Method Overview: Spartan
• Energy/Temperature Discretization

– Solves 2 T + Multi-Group Even-Parity Equations

– Can yoke Te and Ti together to make 1 T

– Can use a single-group radiation treatment to make 3 T

• Angular Discretization

– Uses Simplified Spherical Harmonics — SPN

– Can do a P1 (diffusion-like) solution

• Spatial Discretization

– SPN decouples equations into many diffusion equations

– Diffusion equations are solved by Augustus

• Temporal Discretization

– Linearized implicit discretization

– Equivalent to one pass of a Newton solve

– Iteration strategy:

∗ Source iteration

∗ DSA acceleration

∗ LMFG acceleration

5 of 25



Method Overview: Augustus
• Spatial Discretization

– Morel-Hall asymmetric diffusion discretization

– Support Operator symmetric diffusion discretization

– Hall symmetric diffusion discretization (2-D, x-y only)

• Temporal Discretization

– Backwards Euler implicit discretization

• Matrix Solution

– Krylov Subspace Iterative Methods

∗ JTpack: GMRES, BCGS, TFQMR

∗ Preconditioners:

· JTpack: Jacobi, SSOR, ILU

· Low-order version of Morel-Hall discretization that

is a smaller, symmetric system and is solved by CG

with SSOR (from JTpack)

– Incomplete Direct Method - UMFPACK
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Mesh Description

Multi-Dimensional Mesh:

Dimension Geometries Type of Elements
1-D spherical,

cylindrical

or cartesian

line segments

2-D cylindrical

or cartesian

quadrilaterals or triangles

3-D cartesian hexahedra or degenerate

hexahedra (tetrahedra,

prisms, pyramids)

all with an unstructured (arbitrarily connected) format.

This presentation will assume a 3-D mesh.
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Simplified Spherical Harmonics (SPN)
Even-Parity Equation Set

Radiation transport equations:

1

c

∂

∂t
ξm,g +

−→
∇ ·

−→
Γ m,g + σ

t
gξm,g = σs

gφg + σ
e
gBg + Cs

g ,

1

c

∂

∂t

−→
Γ m,g + µ

2
m
−→
∇ ξm,g + σ

t
g
−→
Γ m,g =

−→
C

v
m,g

for m = 1,M , and g = 1, G.

Temperature equations:

Cvi
∂Ti

∂t
= α (Te − Ti) +Qi ,

Cve
∂Te

∂t
= α (Ti − Te) +Qe +

G
∑

g=1

(

σa
gφ

(0)
g − σe

gBg

)

,

where

ξm,g = Even-parity pseudo-angular energy intensity,

−→
Γ m,g = Even-parity pseudo-angular energy current,
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Simplified Spherical Harmonics (SPN)
Even-Parity Equation Set (cont)
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Simplified Spherical
Harmonics (SPN) Properties

• SP1 and P1 equations are identical.

• SPN and PN equations are identical in 1-D slab ge-

ometry.

• Rotationally invariant −→ no ray effects.

• SPN is a non-convergent method. It is an asymptotic

approximation associated with the diffusion limit. As

N −→ ∞, the solution doesn’t necessarily converge

to the true answer.

• SPN has almost the same accuracy for lower orders as

SN if the solution is approximately locally 1-D, but is

much cheaper.
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Simplified Spherical
Harmonics (SPN) Properties (cont)

• With DSA and LMFG acceleration, SPN costsMG+

G + 1 diffusion solutions for every outer iteration.

• Unlike the diffusion equation, the SPN equations

propagate information at a finite speed. For radiation,

this speed approaches c from below as the order of ap-

proximation is increased.

• Order N unknowns for SPN , vs. order N
2 unknowns

for PN and SN .

• In a homogeneous region, SPN and PN scalar flux

solutions satisfy same equation, except with different

boundary conditions.
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Simplified Spherical Harmonics
(SPN) Temporal Discretization

Radiation transport equations:
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,

where

Blue = Implicit or backwards Euler terms,

Magenta = Explicit or extrapolated implicit terms,

Red = Implicit terms accelerated by DSA,

Green = Linearized implicit terms accelerated by LMFG.

This is not quite accurate — it’s actually more complicated than this — but this captures the flavor of the temporal discretization.
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Simplified Spherical Harmonics
(SPN) Source Iteration Strategy

• SPN Equations: Red and Green terms are treated

explicitly, equations decouple into M × G separate

diffusion equations

• DSA Equations: summing over angle and treating Red

terms implicitly leads to G separate diffusion equa-

tions, which provide an angle-constant update

• LMFG Equation: summing over group and treating

Green terms implicitly leads to a single diffusion equa-

tion, which provides a spectrum-scaled update

• These equations are solved repeatedly until the Red

and Green terms converge
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Diffusion (P1) Equation Set:

α
∂Φ

∂t
−

−→
∇ ·D

−→
∇ Φ +

−→
∇ ·

−→
J + σΦ = S

Which can be written

α
∂Φ

∂t
+

−→
∇ ·

−→
F + σΦ = S

−→
F = −D

−→
∇ Φ +

−→
J

Where

Φ = Intensity

−→
F = Flux

D = Diffusion Coefficient

α = Time Derivative Coefficient

σ = Removal Coefficient

S = Intensity Source Term

−→
J = Flux Source Term
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Diffusion Discretization
Method Properties
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All three methods:

• Are cell-centered – balance equations are done over a

cell

• Require cell-centered and face-centered unknowns to

rigorously treat material discontinuities

• Preserve the homogeneous linear solution, and are

second-order accurate

• Reduce to the standard cell-centered operator for an

orthogonal mesh

• Maintain local energy conservation
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Diffusion Discretization
Method Properties (cont)

• Morel-Hall Asymmetric Method

– Described in

Michael L. Hall, and Jim E. Morel. A Second-Order Cell-
Centered Diffusion Differencing Scheme for Unstructured Hex-
ahedral Lagrangian Meshes. In Proceedings of the 1996
Nuclear Explosives Code Developers Conference (NECDC),
UCRL-MI-124790, pages 359–375, San Diego, CA, Octo-
ber 21–25 1996. LA-UR-97-8.

which is an extension of

J. E. Morel, J. E. Dendy, Jr., Michael L. Hall, and Stephen W.
White. A Cell-Centered Lagrangian-Mesh Diffusion Differenc-
ing Scheme. Journal of Computational Physics, 103(2):286-
299, December 1992.

to 3-D unstructured meshes, with an alternate derivation.

• Hall Symmetric Method:

– Based on the above method, but only applicable in 2-D x-y.

• Support Operator Symmetric Method:

– Extension of the method described in

Mikhail Shashkov and Stanly Steinberg. Solving Diffusion
Equations with Rough Coefficients in Rough Grids. Journal
of Computational Physics, 129:383-405, 1996.

to 3-D unstructured meshes, with an alternate derivation.
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Diffusion Discretization Stencil

The flux at a given face, for example the +k-face,

−→
F

n+1
+k = −Dc,+k

−→
∇ Φn+1 +
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J+k

is defined using this stencil:
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in the Asymmetric Method. The Support Operator Method

uses all seven unknowns within a cell to define the face flux.
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Diffusion Discretization Stencil (cont)

Each cell has a cell-centered conservation equation which

involves all six face fluxes, and gives a stencil which includes

all seven unknowns within the cell (in both methods).
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To close the system, an equation relating the fluxes on each

side of a face is added for every face in the problem. This

gives the following stencil:
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in the Asymmetric Method. The Support Operator Method

uses all thirteen unknowns within a cell-cell pair to define

the face equation.
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Algebraic Solution

• Main Matrix System (Asymmetric Method):

– Asymmetric – must use an asymmetric solver like

GMRES, BCGS or TFQMR

– Size is (4nc + nb/2) squared

– Maximum of 11 non-zero elements per row

• Main Matrix System (Support Operator Method):

– Symmetric – can use CG to solve

– Size is (4nc + nb/2) squared

– Maximum of 13 non-zero elements per row

• Preconditioner for Krylov Space methods is a Low-

Order Matrix System:

– Assume orthogonal: drop out minor directions in

flux terms

– Symmetric – can use standard CG solver

– Size is nc squared

– Maximum of 7 non-zero elements per row
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Results: Sample Augustus Problem

• 3-D Kershaw-Squared Mesh

• Constant properties

• No removal or sources

• Reflective boundaries on 4 sides

• Source and vacuum boundary conditions on opposite

sides

• Analytic solution - linear

• Grid size - 20 × 20 × 20 = 8000 nodes, 6859 cells

• 50 time steps, 15 s / time step on IBM RS/6000 Scal-

able POWERparallel System, SP2
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Results: Sample Problem
Actual Mesh (Cell Nodes)

Dual Mesh (Cell Centers)
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Results: Sample Problem
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Results: Sample Problem
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Results: Sample Problem
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Future Work

• Parallel (JTpack90, PGSlib, SPAM)

• Object-based, design-by-contract F90

• Generic programming?

• Integrated documentation (HTML, PS)

• Newton-Krylov solution method?

• Alternate angular discretization?

• Self-adjoint equation set?
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